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1 Examples of Rademacher Complexity Bounds for Func-
tion Classes

1.1 Recap: chaining bounds for Rademacher complexity of function
classes

Last time, we were using the metric entropy method to bound the Rademacher complexity
of a function class. We considered 4 metrics on F :

‖ · ‖L2(P), ‖ · ‖L∞ , ‖ · ‖L2(Pn), ρ on parameter space.

Relationships of these metrics gave us relationships between the covering numbers:

N(ε;F , ‖ · ‖L2(Pn) ≤ sup
P
N(ε;F , ‖ · ‖L2(P))

≤ N(ε;F , ‖ · ‖L∞)

And if the function class F is a Lipschitz parametrization,

≤ N(ε;T, ρ)

If we let Xf = 1√
n

∑n
i=1 εif(xi), then we can show that

E[eλ(Xf−Xg)] ≤ e(λ2/2)‖f−g‖2Pn ≤ e(λ2/2)‖f−g‖2∞ ,

which tells us that {Xf}f∈F is a sub-Gaussian process with respect to the L2(Pn) or L∞

metric.
We showed two results:

Proposition 1.1. Let Rn(F) := Eεi,Xi

[
supf∈F

∣∣ 1
n

∑n
i=1 εif(Xi)

∣∣]. Then

1.

Rn(F) .
DP√
n

∫ 1

0
sup
Q

√
logN(DQu;F , L2(Q)) du,
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2.

Rn(F) .
D∞√
n

inf
ε
ε+

1√
n

∫ 1

ε
sup
Q

√
logN(D∞u;F , L∞) du,

where DP = supf∈F ‖f‖L2(P) and D∞ = supf∈F ‖f‖∞.

1.2 Examples of upper bounds for parametric and nonparametric func-
tion classes

Here are some examples for upper bounds of Rademacher complexity for function classes.

Example 1.1. Let F = {fθ(x) = 1− e−θx, x ∈ [0, 1] : θ ∈ [0, 1]} be a parametric function
class. Then taking the derivative gives us

|fθ1(x)− fθ2(x)| ≤ sup
θ∈[theta1,θ2]

|xe−θx︸ ︷︷ ︸
≤x

|θ1 − θ2| ≤ |θ1 − θ2|

The covering number for the unit interval with | · | is bounded as

N(ε; [0, 1], | · |) ≤ 1

2ε
+ 1,

so we get a covering number bound for the parametric function class

N(ε;F , L∞) ≤ N(ε; [0, 1], | · |) ≤ 1

2ε
+ 1.

Using the chaining bound with D∞ = supf∈F ‖f‖∞ = supf∈F supx∈[0,1] |1− e−θx| ≤ 1,

Rn(F) ≤ D∞√
n

∫ 1

0

√
logN(uD∞;F , L∞) du =

1√
n

∫ 1

0

√
logN(u;F , L∞) du

=
1√
n

∫ 1

0

√
log( 1

2u + 1) du

.
C√
n
.

Example 1.2 (Lipschitz parameterization). Consider a function class F = {fθ : X → R :
θ ∈ Bd

2(1) with ‖f0(x)‖∞ = c0 = 0. If |fθ1(x)− fθ2(x)| ≤ L‖θ1 − θ2‖2, then we can use the
bound

logN(ε;F , L∞) ≤ logN(ε;Bd
2(1), ‖ · ‖2 . d log . d log

(
1

ε
+ 1

)
to get

Rn(F) . L
D∞√
n

∫ 1

0

√
logN(ε;F , L∞) dε,
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where D∞ = supθ ‖fθ‖∞ ≤ c0 + L = L

.
L√
n

∫ 1

0

1√
n

∫ 1

0

√
d log(1/n) du

. L

√
d

n
.

If we have a nonparametric function class, it may have infinite Rademacher complexity.
So in general, we will want some sort of smoothness condition to make the complexity
finite.

Example 1.3 (Nonparametric class with smoothness/convexity). Consider the non-parametric
function class FL = {g : [0, 1]→ R | g(0) = 0, g is L-Lip}. Then

logN(ε;FL, L∞) � L

ε
,

which we can see from the following figure in Wainwright’s book that shows how to bound
the packing number:

In particular, if f 6= g, then
M(Lε;F , L∞) ≥ 21/ε.

Taking log and rescaling ε, we get

logM(Lε;F , L∞) ≥ 21/ε ≥ 2L

ε
log 2.
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On the other hand, we can get an upper bound by seeing that these functions cover the
function class.

Here, we have ‖F‖∞ = supf∈F |f | = L, so the one-step discretization bound gives

Rn(FL) . inf
ε
ε+

1√
n

√
logN(ε;F , ‖ · ‖∞)

= inf
ε
ε+

1√
nε

� 1

n1/3

The chaining bound gives

Rn(FL) . inf
ε
ε+

1√
n

∫ 1

ε

√
1

u
du

� 1√
n
.

So in this case, the one-step discretization bound gives a sharper bound than the chaining
method.

Example 1.4 (Nonparametric class, general d). Consider a nonparametric function class
with general d:

FdL = {g : [0, 1]d → R : g(0) = 0, g is L-Lip in ‖ · ‖∞}.

We can show that

logN(ε;FdL.L∞) �
(
L

ε

)d
.

The calculation of the resulting bounds on the Rademacher complexity is left for homework.

1.3 Boolean function classes

Consider a Boolean function class F ⊆ {f : X → {0, 1}}, VC theory tells us that F has
PD(ν), where ν = VC(F). Usng the maximal inequality, we have the bound

Rn(F) .

√
ν log(n+ 1)

n
.

We have mentioned that the log factor in this bound makes the bound not tight.

Proposition 1.2. For a boolean function class with ν = VC(F),

sup
P

log(N(ε;F , L2(P))) . ν log
(e
ε

)
for ε < 1.
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For a sharp but difficult proof of this bound, see theorem 2.6.4 from [Van der Vaart
and Wellner, 1996]. A weaker but easier version of this bound can be found in the notes
[Sen, Theorem 7.9].

If we use the chaining argument, we get the bound

Fn(F) .
1√
n

∫ 1

0

√
ν log(e/ε) dε ∝

√
ν

n
.

Example 1.5. Specialize to the function class F = {1x≤t : t ∈ R, which we first examined
when looking at empirical processes. This has VC-dimension 1, so

Rn(F) .

√
1

n
.

This tells us that

P
(

sup
t∈R
|Fn(t)− F (t)| ≥ c√

n
+

ε√
n

)
≤ 2e−ε

2/2.

Remark 1.1. This is not the tightest version of this bound. The tighest bound, given by
Dvoretzky, Kiefer, Wolfowitz, and Massart, is

P
(

sup
t∈R
|Fn(t)− F (t)| ≥ ε√

n

)
≤ 2e−ε

2/2.

1.4 Contraction inequalities

Consider d functions φj : R → R which are L-Lipschitz with φj(0) = 0. We can think off
φj(θ) as a loss function L(y; θ).

Proposition 1.3 (Talagrand-Ledoux concentration). Let T ⊆ Rd, and let {φj} be centered
Lipschitz. Then

E

sup
θ∈T

d∑
j=1

εjφj(θj)

 ≤ LE

sup
θ∈T

d∑
j=1

εjθj

 ,

E

sup
θ∈T

∣∣∣∣∣∣
d∑
j=1

εjφj(θj)

∣∣∣∣∣∣
 ≤ 2LE

sup
θ∈T

∣∣∣∣∣∣
d∑
j=1

εjθj

∣∣∣∣∣∣
 .

The interpretation is that the right hand side is R(T ). The left hand side is R(φ(T )).
This says that if we apply a contraction map to a space, the Rachemacher complexity will
not increase.

The textbook has a proof for when εi are iid Gaussian random variables. This is given
by the Gaussian comparison inequality.

5



Example 1.6. Let Zi = (Xi, Yi)
iid∼ P ∈ P(B2(M) × {±1}) for i ∈ [n]. For logistic

regression, we want a logistic loss function:

Mθ(Z) := log(1 + exp(−yθ>x)).

Taking the expectation gives
M(θ) = EZ [mθ(Z)].

We also let Θ = B2(r). Compare the empirical and population risk:

E := E

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

mθ(Zi)−M(θ)

∣∣∣∣∣
]

≤ 2E

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

εimθ(Zi)

∣∣∣∣∣
]

We are looking at the function class F = {mθ(zi) : θ ∈ Θ}. If we wanto replace mθ(zi) by
θ>xi, then we can use the contraction inequality. This is because log(1 + ex) is 1-Lipschitz
(by d

dx log(1 + ex) = ex

1+ex ≤ 1. So we can write φi(θ̃i) = log(1 + exp(−yiθ̃i))− log 2. This

depends on Yi, and θ̃i = θ>Xi depends on Xi, to use the contraction inequality, we first
condition on Y and X:

= 2EY,X

[
Eε

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

εimθ(Zi)

∣∣∣∣∣ | Y,X
]]

= 2EY,X

[
Eε

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

εi(φ(θ̃i) + log 2)

∣∣∣∣∣ | Y,X
]]

First, use the triangle inequality to get rid of the log 2:

≤ 2EY,X

[
Eε

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

εi(φ(θ̃i) + log 2)

∣∣∣∣∣ | Y,X
]]

+ (· · · )

Now apply the contraction inequality with Θ̃ = {(〈θ, xi, . . . , , 〈θ, xn〉) : θ ∈ Θ} ⊆ Rn.

≤ 4EY,X

[
Eε

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

εiθ̃i

∣∣∣∣∣ | Y,X
]]

+ (· · · )

= 4EY,X

[
Eε

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

εi〈Xi, θ〉

∣∣∣∣∣ | Y,X
]]

+ (· · · )

= 4Eε,X

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

εi〈Xi, θ〉

∣∣∣∣∣
]

+ (· · · )

= 4Eε,X

[
sup
θ∈Θ

∣∣∣∣∣
〈

1

n

n∑
i=1

εiXi, θ

〉∣∣∣∣∣
]

+ (· · · )
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= 4rEε,X

[∥∥∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥∥∥
2

]
+ (· · · )

≤ 4rEε,X

∥∥∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥∥∥
2

2

1/2

+ (· · · )

= 4r

(
E[‖X‖22]

n

)1/2

+ (· · · )

≤ 4
rM√
n

+ (· · · ).

1.5 Further topics: Orlicz processes and bracketing numbers

There is a generalization of sub-Gaussian using the Orlicz norm.

Definition 1.1. Let ψq(t) := exp(tq)− 1 for q ∈ [1, 2]. The q-Orlicz norm is

‖X‖ψq := inf{λ > 0 : E[ψq(|X|/λ)] ≤ 1}.

We can prove concentration inequalities, the maximal inequality, the one-step dis-
cretization bound, and the chaining bounding in terms of Orlicz norms.

In empirical process theory, there is another notion of covering called the bracketing
number. This is discussed in the notes by Sen and in Chapter 2 of Van der Waart and
Wellner.

Definition 1.2. Given two functions `(·) and u(·), the bracket

[L, u] = {f ∈ F : `(x) ≤ f(x) ≤ u(x) ∀x ∈ X}.

An ε-bracket is a bracket [L, u] with ‖`− u‖ ≤ ε.

Definition 1.3. The bracketing number N[](ε;F , ‖ · ‖) is the minimum number of ε-
brackets needed to cover F , i.e.

N[](ε;F , ‖ · ‖) = min{N : {[`i, ui]i∈[N ] covers F and ‖`i − ui‖ ≤ ε}.

Proposition 1.4. Let Rn(F) := Eεi,Xi

[
supf∈F

∣∣ 1
n

∑n
i=1 εif(Xi)

∣∣]. Then

Rn(F) .
DP√
n

∫ 1

0

√
logN[](DPu;F , L2(P)).

Notice that here, unlike the our bound in terms of covering numbers, does not require
us to take the sup over distributions Q. Regardless, usually, if you can prove a bound using
the bracketing number, you can prove it using the covering number.
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